Prediction for human motion tracking failures

We propose a new and effective method of predicting tracking failures and apply it to the robust analysis of gait and human motion. We define a tracking failure as an event and describe its temporal characteristics using a hidden Markov model (HMM). We represent the human body using a three-dimensio...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 15(2006), 2 vom: 30. Feb., Seite 411-21
Auteur principal: Dockstader, Shiloh L (Auteur)
Autres auteurs: Imennov, Nikita S
Format: Article
Langue:English
Publié: 2006
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Evaluation Study Journal Article
LEADER 01000caa a22002652 4500
001 NLM160730406
003 DE-627
005 20250207031319.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0536.xml 
035 |a (DE-627)NLM160730406 
035 |a (NLM)16479811 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dockstader, Shiloh L  |e verfasserin  |4 aut 
245 1 0 |a Prediction for human motion tracking failures 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 14.03.2006 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We propose a new and effective method of predicting tracking failures and apply it to the robust analysis of gait and human motion. We define a tracking failure as an event and describe its temporal characteristics using a hidden Markov model (HMM). We represent the human body using a three-dimensional, multicomponent structural model, where each component is designed to independently allow the extraction of certain gait variables. To enable a fault-tolerant tracking and feature extraction system, we introduce a single HMM for each element of the structural model, trained on previous examples of tracking failures. The algorithm derives vector observations for each Markov model using the time-varying noise covariance matrices of the structural model parameters. When transformed with a logarithmic function, the conditional output probability of each HMM is shown to have a causal relationship with imminent tracking failures. We demonstrate the effectiveness of the proposed approach on a variety of multiview video sequences of complex human motion 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Imennov, Nikita S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1997  |g 15(2006), 2 vom: 30. Feb., Seite 411-21  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:2  |g day:30  |g month:02  |g pages:411-21 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 2  |b 30  |c 02  |h 411-21