|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM16071298X |
003 |
DE-627 |
005 |
20250207030922.0 |
007 |
tu |
008 |
231223s2005 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0536.xml
|
035 |
|
|
|a (DE-627)NLM16071298X
|
035 |
|
|
|a (NLM)16477991
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shim, S
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Dissolved organic matter from agricultural fields in the irrigation period
|
264 |
|
1 |
|c 2005
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 25.05.2006
|
500 |
|
|
|a Date Revised 19.11.2015
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The aim of this study was to quantify and characterize the dissolved organic carbon (DOC) of paddy fields and crop fields in Tottori, Japan. Dissolved organic carbon (DOC) and ultraviolet (UV) absorbance was measured for the filtrated water of each samples. DOC concentration and SUVA (specific UV absorbance) of biodegradation analysis samples were determined around 50 days after the incubation. In the Fukui paddy fields, DOC concentration varied seasonally from 1.1 to 10.1 mg.Cl(-1), showing higher concentration in heavy runoff of non-agriculture period in April. However, DOC concentration variation did not always correspond to rainfall. The Obadake paddy fields also showed a similar pattern with Fukui paddy fields. The daily DOC discharge per area in Fukui (up), Fukui (down), Obadake (south), Obadake (north) paddy fields influent from paddy fields were 0.02, 0.0161, 0.0135 and 0.0027 kg.a(-1).day(-1), respectively. These differences resulted from differences in agricultural types and customs of farmers according to paddy fields and fields. Also, SUVA (an indirect means to evaluate humic substances (hydrophobic fraction)) of the studied influent waters from paddy fields were generally lower than the influent waters from crop fields. The non-biodegradable DOC accounted for 50.2-98%, 46.8-85.5% of the total DOC in the paddy fields and crop fields
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Humic Substances
|2 NLM
|
650 |
|
7 |
|a Organic Chemicals
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
700 |
1 |
|
|a Kim, B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hosoi, Y
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Masuda, T
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 52(2005), 12 vom: 01., Seite 233-41
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:52
|g year:2005
|g number:12
|g day:01
|g pages:233-41
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 52
|j 2005
|e 12
|b 01
|h 233-41
|