Development of water quality models for supporting NH3-N control in a dam regulated river

A seasonal occurrence of high ammonia nitrogen (NH3-N) concentrations has hampered chemical treatment processes of a water plant in Geum river of Korea. Monthly flow allocation from upstream dam is important for downstream NH3-N control. In this study, water quality models based on multiple regressi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 52(2005), 12 vom: 01., Seite 83-90
1. Verfasser: Chung, S W (VerfasserIn)
Weitere Verfasser: Kim, J H
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Water Pollutants, Chemical Ammonia 7664-41-7
LEADER 01000caa a22002652c 4500
001 NLM160712815
003 DE-627
005 20250207030919.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0536.xml 
035 |a (DE-627)NLM160712815 
035 |a (NLM)16477974 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chung, S W  |e verfasserin  |4 aut 
245 1 0 |a Development of water quality models for supporting NH3-N control in a dam regulated river 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 25.05.2006 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A seasonal occurrence of high ammonia nitrogen (NH3-N) concentrations has hampered chemical treatment processes of a water plant in Geum river of Korea. Monthly flow allocation from upstream dam is important for downstream NH3-N control. In this study, water quality models based on multiple regression (MR) and artificial neural network (ANN) methods were developed to support dam operations through providing forecasted NH3-N concentrations. The models were calibrated with 7 years of monthly data, and verified with another 3 years of independent data. In the models, the NH3-N concentration for next time step is dependent on dam outflow, river water quality such as alkalinity, temperature, and NH3-N of previous time step. During the calibration phase, the ANN models compared to MR models showed a better agreement with observed data as indicated with small RMSE and high R2 values. However, in the verification phase, the performance of ANN models was decreased and showed a little difference to MR models. From the model comparisons, it is recommended for both ANN and MR models to include the autocorrelation of NH3-N concentrations up to 3-lag months to avoid overestimation during low flow season 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Water Pollutants, Chemical  |2 NLM 
650 7 |a Ammonia  |2 NLM 
650 7 |a 7664-41-7  |2 NLM 
700 1 |a Kim, J H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 52(2005), 12 vom: 01., Seite 83-90  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnas 
773 1 8 |g volume:52  |g year:2005  |g number:12  |g day:01  |g pages:83-90 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 52  |j 2005  |e 12  |b 01  |h 83-90