An integrated electro-chemical and natural treatment system for industrial water pollution control

Experiments were conducted to test the feasibility of applying an integrated electro-chemical (EC) and natural treatment system for treatment of some industrial wastewaters. The EC process was found to be very effective in removing lead, a model heavy metal from some wastewaters. Within 20 minutes o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 52(2005), 12 vom: 01., Seite 1-8
1. Verfasser: Polprasert, C (VerfasserIn)
Weitere Verfasser: Sharma, K, Koottatep, T
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Ferric Compounds Industrial Waste Metals, Heavy Organic Chemicals Soil Pollutants Water Pollutants, Chemical ferric oxide 1K09F3G675 Lead mehr... 2P299V784P Ferrosoferric Oxide XM0M87F357
Beschreibung
Zusammenfassung:Experiments were conducted to test the feasibility of applying an integrated electro-chemical (EC) and natural treatment system for treatment of some industrial wastewaters. The EC process was found to be very effective in removing lead, a model heavy metal from some wastewaters. Within 20 minutes of operation time, 5 to 10 A of electric current and specific surface area of electrode of 46.51 m2/m3, the lead concentrations in the wastewaters were reduced from 35-100 mg/l to less than 1 mg/l. Based on a kinetic model developed from the experimental data, the important parameters for the EC process were found to be electric current, specific surface area of electrode, and operation time. From scanning electron microscopic and X-ray diffractometric (XRD) analysis, the EC sludge samples were found to compose mainly of maghemite (Fe2O3), magnetite (Fe3O4), and laurionite (PbClOH), suitable for disposal to secure landfills. Two pilot-scale constructed wetlands (CW) in series, a model natural treatment system, were employed to treat wastewaters of an industrial estate in Thailand. At organic loading rates of 57-140 kg BOD/hectare-year, these constructed wetlands were able to reduce BOD from 90 to 4 mg/l, while suspended solids, total nitrogen and total phosphorus were reduced from 100 to 10 mg/l, 24 to 4.6 mg/l and 7 to 1.5 mg/l, respectively, during the summer season. These results demonstrated technical feasibility of CW in removing organic and other pollutants contained in this industrial wastewater
Beschreibung:Date Completed 25.05.2006
Date Revised 19.11.2015
published: Print
Citation Status MEDLINE
ISSN:0273-1223