|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM160686113 |
003 |
DE-627 |
005 |
20231223090611.0 |
007 |
tu |
008 |
231223s2006 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0536.xml
|
035 |
|
|
|a (DE-627)NLM160686113
|
035 |
|
|
|a (NLM)16475179
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xie, Hong-Bin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Radical reaction C3H+NO
|b a mechanistic study
|
264 |
|
1 |
|c 2006
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 03.05.2006
|
500 |
|
|
|a Date Revised 21.11.2013
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Although a number of hydrocarbon radicals including the heavier C(3)-radicals C(3)H(3) and C(3)H(5) have been experimentally shown to deplete NO effectively, no theoretical or experimental attempts have been made on the reactivity of the simplest C(3)-radical towards NO. In this article, we report our detailed mechanistic study on the C(3)H+NO reaction at the Gussian-3//B3LYP/6-31G(d) level by constructing the singlet and triplet electronic state [H,C(3),N,O] potential energy surfaces (PESs). The l-C(3)H+NO reaction is shown to barrierlessly form the entrance isomer HCCCNO followed by the direct O-elimination leading to HCCCN+(3)O on triplet PES, or by successive O-transfer, N-insertion, and CN bond-rupture to generate the product (1)HCCN+CO on singlet PES. The possible singlet-triplet intersystem crossings are also discussed. Thus, the novel reaction l-C(3)H+NO can proceed effectively even at low temperatures and is expected to play an important role in both combustion and interstellar processes. For the c-C(3)H+NO reaction, the initially formed H-cCCC-NO can most favorably isomerize to HCCCNO, and further evolution follows that of the l-C(3)H+NO reaction. Quantitatively, the c-C(3)H+NO reaction can take place barrierlessly on singlet PES, yet it faces a small barrier 2.7 kcal/mol on triplet PES. The results will enrich our understanding of the chemistry of the simplest C(3)-radical in both combustion and interstellar processes, which to date have received little attention despite their importance and available abundant studies on its structural and spectroscopic properties
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Free Radicals
|2 NLM
|
650 |
|
7 |
|a Hydrocarbons
|2 NLM
|
650 |
|
7 |
|a Nitric Oxide
|2 NLM
|
650 |
|
7 |
|a 31C4KY9ESH
|2 NLM
|
700 |
1 |
|
|a Ding, Yi-Hong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Chia-Chung
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 27(2006), 5 vom: 15. Apr., Seite 641-60
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2006
|g number:5
|g day:15
|g month:04
|g pages:641-60
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2006
|e 5
|b 15
|c 04
|h 641-60
|