Data driven image models through continuous joint alignment

This paper presents a family of techniques that we call congealing for modeling image classes from data. The idea is to start with a set of images and make them appear as similar as possible by removing variability along the known axes of variation. This technique can be used to eliminate "nuis...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 28(2006), 2 vom: 18. Feb., Seite 236-50
1. Verfasser: Learned-Miller, Erik G (VerfasserIn)
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Evaluation Study Journal Article Research Support, N.I.H., Extramural
LEADER 01000naa a22002652 4500
001 NLM160627214
003 DE-627
005 20231223090459.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0536.xml 
035 |a (DE-627)NLM160627214 
035 |a (NLM)16468620 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Learned-Miller, Erik G  |e verfasserin  |4 aut 
245 1 0 |a Data driven image models through continuous joint alignment 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 07.03.2006 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper presents a family of techniques that we call congealing for modeling image classes from data. The idea is to start with a set of images and make them appear as similar as possible by removing variability along the known axes of variation. This technique can be used to eliminate "nuisance" variables such as affine deformations from handwritten digits or unwanted bias fields from magnetic resonance images. In addition to separating and modeling the latent images-i.e., the images without the nuisance variables-we can model the nuisance variables themselves, leading to factorized generative image models. When nuisance variable distributions are shared between classes, one can share the knowledge learned in one task with another task, leading to efficient learning. We demonstrate this process by building a handwritten digit classifier from just a single example of each class. In addition to applications in handwritten character recognition, we describe in detail the application of bias removal from magnetic resonance images. Unlike previous methods, we use a separate, nonparametric model for the intensity values at each pixel. This allows us to leverage the data from the MR images of different patients to remove bias from each other. Only very weak assumptions are made about the distributions of intensity values in the images. In addition to the digit and MR applications, we discuss a number of other uses of congealing and describe experiments about the robustness and consistency of the method 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 28(2006), 2 vom: 18. Feb., Seite 236-50  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:28  |g year:2006  |g number:2  |g day:18  |g month:02  |g pages:236-50 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2006  |e 2  |b 18  |c 02  |h 236-50