Microsphere organization of nanorods directed by PEG linear polymer

We demonstrate the sphere organization of ZnO, Bi2S3, MnO2, and La(OH)3 nanorods directed by PEG linear polymer. Our study shows that zinc, bismuth, manganese, or lanthanum species added to PEG solutions, in which PEG molecules are well dissolved in a coil state, convert the polymer coils to aggrega...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 4 vom: 14. Feb., Seite 1383-7
1. Verfasser: Zhou, Xingfu (VerfasserIn)
Weitere Verfasser: Chen, Shuyi, Zhang, Danyu, Guo, Xuefeng, Ding, Weiping, Chen, Yi
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We demonstrate the sphere organization of ZnO, Bi2S3, MnO2, and La(OH)3 nanorods directed by PEG linear polymer. Our study shows that zinc, bismuth, manganese, or lanthanum species added to PEG solutions, in which PEG molecules are well dissolved in a coil state, convert the polymer coils to aggregate structures, which further aggregate into micrometer-sized M(n+)-PEG globules. The concentration of metallic species is higher in the globules than in bulk solutions. The surfaces of the globules act as soft templates for the initial nucleation and thereafter the growth of the nanorods. Finally, echinus-type assemblies of single-crystalline nanorods form by the metallic species hydrolyzing or reacting with deposition agents. This approach opens the possibility of using polymers as soft templates to control the organization of nano building units into designed structures
Beschreibung:Date Completed 09.05.2007
Date Revised 07.02.2006
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827