Nitrogen removal from piggery waste using the combined SHARON and ANAMMOX process
Nitrogen removal in piggery waste was investigated with the combined SHARON-ANAMMOX process. The piggery waste was characterized as strong nitrogenous wastewater with very low C/N ratio. For the preceding SHARON reactor, ammonium nitrogen loading and conversion rates were 0.97 kg NH4-N/m3 reactor/da...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 52(2005), 10-11 vom: 18., Seite 487-94 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2005
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Industrial Waste Manure Nitrates Nitrites Oligonucleotide Probes Quaternary Ammonium Compounds Carbon 7440-44-0 Ammonia mehr... |
Zusammenfassung: | Nitrogen removal in piggery waste was investigated with the combined SHARON-ANAMMOX process. The piggery waste was characterized as strong nitrogenous wastewater with very low C/N ratio. For the preceding SHARON reactor, ammonium nitrogen loading and conversion rates were 0.97 kg NH4-N/m3 reactor/day and 0.73 kg NH4-N/m3 reactor/day, respectively. Alkalinity consumption for ammonium conversion was 8.5 gr bicarbonate utilized per gram ammonium nitrogen converted to NO2-N or NO3-N at steady-states operation. The successive ANAMMOX reactor was fed with the effluent from SHARON reactor. Nitrogen loading and conversion rates were 1.36 kg soluble N/m3 reactor/day and 0.72 kg soluble N/m3 reactor/day, respectively. The average NO2-N/NH4-N removal ratio by ANAMMOX reaction was 2.13. It has been observed that Candidatus "Kuenenia stuttgartiensis" were dominated in the ANAMMOX reactor based on FISH analysis |
---|---|
Beschreibung: | Date Completed 09.05.2006 Date Revised 21.11.2013 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |