High-affinity potassium and sodium transport systems in plants

All living cells have an absolute requirement for K+, which must be taken up from the external medium. In contrast to marine organisms, which live in a medium with an inexhaustible supply of K+, terrestrial life evolved in oligotrophic environments where the low supply of K+ limited the growth of co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 57(2006), 5 vom: 15., Seite 1149-60
1. Verfasser: Rodríguez-Navarro, Alonso (VerfasserIn)
Weitere Verfasser: Rubio, Francisco
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Review Plant Proteins Potassium Channels Sodium Channels Sodium 9NEZ333N27 Adenosine Triphosphatases EC 3.6.1.- Potassium RWP5GA015D
Beschreibung
Zusammenfassung:All living cells have an absolute requirement for K+, which must be taken up from the external medium. In contrast to marine organisms, which live in a medium with an inexhaustible supply of K+, terrestrial life evolved in oligotrophic environments where the low supply of K+ limited the growth of colonizing plants. In these limiting conditions Na+ could substitute for K+ in some cellular functions, but in others it is toxic. In the vacuole, Na+ is not toxic and can undertake osmotic functions, reducing the total K+ requirements and improving growth when the lack of K+ is a limiting factor. Because of these physiological requirements, the terrestrial life of plants depends on high-affinity K+ uptake systems and benefits from high-affinity Na+ uptake systems. In plants, both systems have received extensive attention during recent years and a clear insight of their functions is emerging. Some plant HAK transporters mediate high-affinity K+ uptake in yeast, mimicking K+ uptake in roots, while other members of the same family may be K+ transporters in the tonoplast. In parallel with the HAK transporters, some HKT transporters mediate high-affinity Na+ uptake without cotransporting K+. HKT transporters have two functions: (i) to take up Na+ from the soil solution to reduce K+ requirements when K+ is a limiting factor, and (ii) to reduce Na+ accumulation in leaves by both removing Na+ from the xylem sap and loading Na+ into the phloem sap
Beschreibung:Date Completed 07.06.2006
Date Revised 09.04.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431