Multiframe demosaicing and super-resolution of color images

In the last two decades, two related categories of problems have been studied independently in image restoration literature: super-resolution and demosaicing. A closer look at these problems reveals the relation between them, and, as conventional color digital cameras suffer from both low-spatial re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 1 vom: 19. Jan., Seite 141-59
1. Verfasser: Farsiu, Sina (VerfasserIn)
Weitere Verfasser: Elad, Michael, Milanfar, Peyman
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:In the last two decades, two related categories of problems have been studied independently in image restoration literature: super-resolution and demosaicing. A closer look at these problems reveals the relation between them, and, as conventional color digital cameras suffer from both low-spatial resolution and color-filtering, it is reasonable to address them in a unified context. In this paper, we propose a fast and robust hybrid method of super-resolution and demosaicing, based on a maximum a posteron estimation technique by minimizing a multiterm cost function. The L1 norm is used for measuring the difference between the projected estimate of the high-resolution image and each low-resolution image, removing outliers in the data and errors due to possibly inaccurate motion estimation. Bilateral regularization is used for spatially regularizing the luminance component, resulting in sharp edges and forcing interpolation along the edges and not across them. Simultaneously, Tikhonov regularization is used to smooth the chrominance components. Finally, an additional regularization term is used to force similar edge location and orientation in different color channels. We show that the minimization of the total cost function is relatively easy and fast. Experimental results on synthetic and real data sets confirm the effectiveness of our method
Beschreibung:Date Completed 28.02.2006
Date Revised 26.10.2019
published: Print
Citation Status MEDLINE
ISSN:1941-0042