Reduced complexity rotation invariant texture classification using a blind deconvolution approach

In this paper, we present a texture classification procedure that makes use of a blind deconvolution approach. Specifically, the texture is modeled as the output of a linear system driven by a binary excitation. We show that features computed from one-dimensional slices extracted from the two-dimens...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 28(2006), 1 vom: 24. Jan., Seite 145-9
1. Verfasser: Campisi, Patrizio (VerfasserIn)
Weitere Verfasser: Colonnese, Stefania, Panci, Gianpiero, Scarano, Gaetano
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Evaluation Study Journal Article
Beschreibung
Zusammenfassung:In this paper, we present a texture classification procedure that makes use of a blind deconvolution approach. Specifically, the texture is modeled as the output of a linear system driven by a binary excitation. We show that features computed from one-dimensional slices extracted from the two-dimensional autocorrelation function (ACF) of the binary excitation allows representing the texture for rotation-invariant classification purposes. The two-dimensional classification problem is thus reconduced to a more simple one-dimensional one, which leads to a significant reduction of the classification procedure computational complexity
Beschreibung:Date Completed 01.02.2006
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:1939-3539