Optimal surface segmentation in volumetric images--a graph-theoretic approach

Efficient segmentation of globally optimal surfaces representing object boundaries in volumetric data sets is important and challenging in many medical image analysis applications. We have developed an optimal surface detection method capable of simultaneously detecting multiple interacting surfaces...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 28(2006), 1 vom: 18. Jan., Seite 119-34
1. Verfasser: Li, Kang (VerfasserIn)
Weitere Verfasser: Wu, Xiaodong, Chen, Danny Z, Sonka, Milan
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Evaluation Study Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM160011159
003 DE-627
005 20240312231926.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n1324.xml 
035 |a (DE-627)NLM160011159 
035 |a (NLM)16402624 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Kang  |e verfasserin  |4 aut 
245 1 0 |a Optimal surface segmentation in volumetric images--a graph-theoretic approach 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 01.02.2006 
500 |a Date Revised 12.03.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Efficient segmentation of globally optimal surfaces representing object boundaries in volumetric data sets is important and challenging in many medical image analysis applications. We have developed an optimal surface detection method capable of simultaneously detecting multiple interacting surfaces, in which the optimality is controlled by the cost functions designed for individual surfaces and by several geometric constraints defining the surface smoothness and interrelations. The method solves the surface segmentation problem by transforming it into computing a minimum s-t cut in a derived arc-weighted directed graph. The proposed algorithm has a low-order polynomial time complexity and is computationally efficient. It has been extensively validated on more than 300 computer-synthetic volumetric images, 72 CT-scanned data sets of different-sized plexiglas tubes, and tens of medical images spanning various imaging modalities. In all cases, the approach yielded highly accurate results. Our approach can be readily extended to higher-dimensional image segmentation 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Wu, Xiaodong  |e verfasserin  |4 aut 
700 1 |a Chen, Danny Z  |e verfasserin  |4 aut 
700 1 |a Sonka, Milan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 28(2006), 1 vom: 18. Jan., Seite 119-34  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:28  |g year:2006  |g number:1  |g day:18  |g month:01  |g pages:119-34 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2006  |e 1  |b 18  |c 01  |h 119-34