Matching 2.5D face scans to 3D models

The performance of face recognition systems that use two-dimensional images depends on factors such as lighting and subject's pose. We are developing a face recognition system that utilizes three-dimensional shape information to make the system more robust to arbitrary pose and lighting. For ea...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 28(2006), 1 vom: 24. Jan., Seite 31-43
1. Verfasser: Lu, Xiaoguang (VerfasserIn)
Weitere Verfasser: Jain, Anil K, Colbry, Dirk
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM160011051
003 DE-627
005 20250207003531.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0533.xml 
035 |a (DE-627)NLM160011051 
035 |a (NLM)16402617 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Xiaoguang  |e verfasserin  |4 aut 
245 1 0 |a Matching 2.5D face scans to 3D models 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 01.02.2006 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The performance of face recognition systems that use two-dimensional images depends on factors such as lighting and subject's pose. We are developing a face recognition system that utilizes three-dimensional shape information to make the system more robust to arbitrary pose and lighting. For each subject, a 3D face model is constructed by integrating several 2.5D face scans which are captured from different views. 2.5D is a simplified 3D (x, y, z) surface representation that contains at most one depth value (z direction) for every point in the (x, y) plane. Two different modalities provided by the facial scan, namely, shape and texture, are utilized and integrated for face matching. The recognition engine consists of two components, surface matching and appearance-based matching. The surface matching component is based on a modified Iterative Closest Point (ICP) algorithm. The candidate list from the gallery used for appearance matching is dynamically generated based on the output of the surface matching component, which reduces the complexity of the appearance-based matching stage. Three-dimensional models in the gallery are used to synthesize new appearance samples with pose and illumination variations and the synthesized face images are used in discriminant subspace analysis. The weighted sum rule is applied to combine the scores given by the two matching components. Experimental results are given for matching a database of 200 3D face models with 598 2.5D independent test scans acquired under different pose and some lighting and expression changes. These results show the feasibility of the proposed matching scheme 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Jain, Anil K  |e verfasserin  |4 aut 
700 1 |a Colbry, Dirk  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 28(2006), 1 vom: 24. Jan., Seite 31-43  |w (DE-627)NLM098212257  |x 0162-8828  |7 nnns 
773 1 8 |g volume:28  |g year:2006  |g number:1  |g day:24  |g month:01  |g pages:31-43 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2006  |e 1  |b 24  |c 01  |h 31-43