Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles

In this paper, we demonstrate the effect of halide ions on the formation of biogenically prepared gold nanotriangles using the leaf extract of lemongrass (Cymbopogon flexuosus) plant. We have also studied the effect of halide ions on the morphology of biogenic nanotriangles. It has been shown that i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 2 vom: 17. Jan., Seite 736-41
1. Verfasser: Rai, Akhilesh (VerfasserIn)
Weitere Verfasser: Singh, Amit, Ahmad, Absar, Sastry, Murali
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Gold Compounds Halogens Ions Plant Extracts Chlorine 4R7X1O2820 Iodine 9679TC07X4
Beschreibung
Zusammenfassung:In this paper, we demonstrate the effect of halide ions on the formation of biogenically prepared gold nanotriangles using the leaf extract of lemongrass (Cymbopogon flexuosus) plant. We have also studied the effect of halide ions on the morphology of biogenic nanotriangles. It has been shown that iodide ions have a greater propensity to transform flat gold nanotriangles into circular disk-like structures as compared to other halide ions. The study also suggests that the presence of Cl- ions during the synthesis promotes the growth of nanotriangles, whereas the presence of I- ions distorts the nanotriangle morphology and induces the formation of aggregated spherical nanoparticles. The change in the morphology of gold nanotriangles has been explained in terms of the ability of the halide ions to stabilize or inhibit the formation of (111) faces to form [111] oriented gold nanotriangles. Last, we have also shown that the temperature is an important parameter for controlling the aspect ratio and the relative amounts of gold nanotriangles and spherical particles. The results show that, by varying the temperature of reaction condition, the shape, size, and optical properties of anisotropic nanoparticles can be fine-tuned
Beschreibung:Date Completed 25.06.2007
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1520-5827