Efficient simulation of binary adsorption isotherms using transition matrix Monte Carlo

Molecular simulations of binary adsorption in porous materials are a useful complement to experimental studies of mixture adsorption. Most molecular simulations of binary adsorption are performed using grand canonical Monte Carlo (GCMC) to independently examine a range of state points of interest. A...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 2 vom: 17. Jan., Seite 709-16
1. Verfasser: Chen, Haibin (VerfasserIn)
Weitere Verfasser: Sholl, David S
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Molecular simulations of binary adsorption in porous materials are a useful complement to experimental studies of mixture adsorption. Most molecular simulations of binary adsorption are performed using grand canonical Monte Carlo (GCMC) to independently examine a range of state points of interest. A disadvantage of this approach is that it only yields information at a discrete set of state points; therefore, if a complete isotherm is required for arbitrary conditions, some type of data fitting or interpolation must be used in combination with the GCMC data. We show that the transition matrix Monte Carlo (TMMC) method of Shen and Errington (Shen, V. K.; Errington, J. R. J. Chem.Phys. 2005, 122, 064508) is well-suited to simulation of binary adsorption in porous materials. At the completion of a TMMC simulation, the adsorption isotherm for all possible bulk phase compositions and pressures is available without data fitting or interpolation. It is also straightforward to use results from TMMC to compute derivatives of the isotherm such as the mixture thermodynamic correction factors, partial differential ln f(i)/partial differential ln c(j), again without data fitting or interpolation. This approach should be useful in contexts where information on the full adsorption isotherm is needed, such as the design of adsorption- or membrane-based separations
Beschreibung:Date Completed 25.06.2007
Date Revised 10.01.2006
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827