Combination of electrografting and atom-transfer radical polymerization for making the stainless steel surface antibacterial and protein antiadhesive

A two-step "grafting from" method has been successfully carried out, which is based on the electrografting of polyacrylate chains containing an initiator for the atom transfer radical polymerization (ATRP) of 2-(tert-butylamino)ethyl methacrylate (TBAEMA) or copolymerization of TBAEMA with...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 1 vom: 03. Jan., Seite 255-62
1. Verfasser: Ignatova, Milena (VerfasserIn)
Weitere Verfasser: Voccia, Samuel, Gilbert, Bernard, Markova, Nadya, Cossement, Damien, Gouttebaron, Rachel, Jérôme, Robert, Jérôme, Christine
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Anti-Bacterial Agents Coated Materials, Biocompatible Methacrylates Polymers Proteins poly(2-(tert-butylamino)ethyl methacrylate) Stainless Steel 12597-68-1
Beschreibung
Zusammenfassung:A two-step "grafting from" method has been successfully carried out, which is based on the electrografting of polyacrylate chains containing an initiator for the atom transfer radical polymerization (ATRP) of 2-(tert-butylamino)ethyl methacrylate (TBAEMA) or copolymerization of TBAEMA with either monomethyl ether of poly(ethylene oxide) methacrylate (PEOMA) or acrylic acid (AA) or styrene. The chemisorption of this type of polymer brushes onto stainless steel surfaces has potential in orthopaedic surgery. These films have been characterized by ATR-FTIR, Raman spectroscopy, atomic force microscopy (AFM), and measurement of contact angles of water. The polymer formed in solution by ATRP and that one detached on purpose from the surface have been analyzed by size exclusion chromathography (SEC) and (1)H NMR spectroscopy. The strong adherence of the films onto stainless steel has been assessed by peeling tests. AFM analysis has shown that addition of hydrophilic comonomers to the grafted chains decreases the surface roughness. According to dynamic quartz crystal microbalance experiments, proteins (e.g., fibrinogen) are more effectively repelled whenever copolymer brushes contain neutral hydrophilic (PEOMA) co-units rather than negatively charged groups (PAA salt). Moreover, a 2- to 3-fold decrease in the fibrinogen adsorption is observed when TBAEMA is copolymerized with either PEOMA or AA rather than homopolymerized or copolymerized with styrene. Compared to the bare stainless steel surface, brushes of polyTBAEMA, poly(TBAEMA-co-PEOMA) and poly(TBAEMA-co-AA) decrease the bacteria adhesion by 3 to 4 orders of magnitude as revealed by Gram-positive bacteria S. aureus adhesion tests
Beschreibung:Date Completed 18.04.2007
Date Revised 25.09.2007
published: Print
Citation Status MEDLINE
ISSN:1520-5827