Effective representation using ICA for face recognition robust to local distortion and partial occlusion

The performance of face recognition methods using subspace projection is directly related to the characteristics of their basis images, especially in the cases of local distortion or partial occlusion. In order for a subspace projection method to be robust to local distortion and partial occlusion,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 27(2005), 12 vom: 19. Dez., Seite 1977-81
1. Verfasser: Kim, Jongsun (VerfasserIn)
Weitere Verfasser: Choi, Jongmoo, Yi, Juneho, Turk, Matthew
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM159573009
003 DE-627
005 20231223084409.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0532.xml 
035 |a (DE-627)NLM159573009 
035 |a (NLM)16355663 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Jongsun  |e verfasserin  |4 aut 
245 1 0 |a Effective representation using ICA for face recognition robust to local distortion and partial occlusion 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 19.01.2006 
500 |a Date Revised 15.11.2006 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The performance of face recognition methods using subspace projection is directly related to the characteristics of their basis images, especially in the cases of local distortion or partial occlusion. In order for a subspace projection method to be robust to local distortion and partial occlusion, the basis images generated by the method should exhibit a part-based local representation. We propose an effective part-based local representation method named locally salient ICA (LS-ICA) method for face recognition that is robust to local distortion and partial occlusion. The LS-ICA method only employs locally salient information from important facial parts in order to maximize the benefit of applying the idea of "recognition by parts." It creates part-based local basis images by imposing additional localization constraint in the process of computing ICA architecture I basis images. We have contrasted the LS-ICA method with other part-based representations such as LNMF (Localized Nonnegative Matrix Factorization) and LFA (Local Feature Analysis). Experimental results show that the LS-ICA method performs better than PCA, ICA architecture I, ICA architecture II, LFA, and LNMF methods, especially in the cases of partial occlusions and local distortions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Choi, Jongmoo  |e verfasserin  |4 aut 
700 1 |a Yi, Juneho  |e verfasserin  |4 aut 
700 1 |a Turk, Matthew  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 27(2005), 12 vom: 19. Dez., Seite 1977-81  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:27  |g year:2005  |g number:12  |g day:19  |g month:12  |g pages:1977-81 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2005  |e 12  |b 19  |c 12  |h 1977-81