Matching shape sequences in video with applications in human movement analysis

We present an approach for comparing two sequences of deforming shapes using both parametric models and nonparametric methods. In our approach, Kendall's definition of shape is used for feature extraction. Since the shape feature rests on a non-Euclidean manifold, we propose parametric models l...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 27(2005), 12 vom: 19. Dez., Seite 1896-909
1. Verfasser: Veeraraghavan, Ashok (VerfasserIn)
Weitere Verfasser: Roy-Chowdhury, Amit K, Chellappa, Rama
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM159572959
003 DE-627
005 20231223084408.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0532.xml 
035 |a (DE-627)NLM159572959 
035 |a (NLM)16355658 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Veeraraghavan, Ashok  |e verfasserin  |4 aut 
245 1 0 |a Matching shape sequences in video with applications in human movement analysis 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 19.01.2006 
500 |a Date Revised 15.11.2006 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We present an approach for comparing two sequences of deforming shapes using both parametric models and nonparametric methods. In our approach, Kendall's definition of shape is used for feature extraction. Since the shape feature rests on a non-Euclidean manifold, we propose parametric models like the autoregressive model and autoregressive moving average model on the tangent space and demonstrate the ability of these models to capture the nature of shape deformations using experiments on gait-based human recognition. The nonparametric model is based on Dynamic Time-Warping. We suggest a modification of the Dynamic time-warping algorithm to include the nature of the non-Euclidean space in which the shape deformations take place. We also show the efficacy of this algorithm by its application to gait-based human recognition. We exploit the shape deformations of a person's silhouette as a discriminating feature and provide recognition results using the nonparametric model. Our analysis leads to some interesting observations on the role of shape and kinematics in automated gait-based person authentication 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Roy-Chowdhury, Amit K  |e verfasserin  |4 aut 
700 1 |a Chellappa, Rama  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 27(2005), 12 vom: 19. Dez., Seite 1896-909  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:27  |g year:2005  |g number:12  |g day:19  |g month:12  |g pages:1896-909 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2005  |e 12  |b 19  |c 12  |h 1896-909