Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces

The underlying mechanisms of stability, metastability, or instability of the Cassie-Baxter and Wenzel wetting modes and their transitions on superhydrophobic surfaces decorated with periodic micropillars are quantitatively studied in this article. Hydraulic pressure, which may be generated by the wa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 21(2005), 26 vom: 20. Dez., Seite 12207-12
1. Verfasser: Zheng, Q-S (VerfasserIn)
Weitere Verfasser: Yu, Y, Zhao, Z-H
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM159451442
003 DE-627
005 20231223084149.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0532.xml 
035 |a (DE-627)NLM159451442 
035 |a (NLM)16342993 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Q-S  |e verfasserin  |4 aut 
245 1 0 |a Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 19.07.2007 
500 |a Date Revised 13.12.2005 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The underlying mechanisms of stability, metastability, or instability of the Cassie-Baxter and Wenzel wetting modes and their transitions on superhydrophobic surfaces decorated with periodic micropillars are quantitatively studied in this article. Hydraulic pressure, which may be generated by the water-air interfacial tension of water droplets or external factors such as raining impact, is shown to be a key to understanding these mechanisms. A detailed transition process driven by increasing hydraulic pressure is numerically simulated. The maximum sustainable or critical pressure of the Cassie-Baxter wetting state on a pillarlike microstructural surface is formulated for the first time in a simple, unified, and precise form. This analytic result reveals the fact that reducing the microstructural scales (e.g., the pillars' diameters and spacing) is probably the most efficient measure needed to enlarge the critical pressure significantly. We also introduce a dimensionless parameter, the pillar slenderness ratio, to characterize the stability of either the Cassie-Baxter or the Wenzel wetting state and show that the energy barrier for transitioning from the Cassie-Baxter to the Wenzel wetting mode is proportional to both the slenderness ratio and the area fraction. Thus, the Cassie-Baxter wetting mode may collapse under a hydraulic pressure lower than the critical one if the slenderness ratio is improperly small. This quantitative study explains fairly well some experimental observations of contact angles that can be modeled by neither Wenzel nor Cassie-Baxter contact angles and eventually leads to our proposals for a mixed (or coexisting) wetting mode 
650 4 |a Journal Article 
700 1 |a Yu, Y  |e verfasserin  |4 aut 
700 1 |a Zhao, Z-H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 21(2005), 26 vom: 20. Dez., Seite 12207-12  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:21  |g year:2005  |g number:26  |g day:20  |g month:12  |g pages:12207-12 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 21  |j 2005  |e 26  |b 20  |c 12  |h 12207-12