|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM159451418 |
003 |
DE-627 |
005 |
20250206224018.0 |
007 |
tu |
008 |
231223s2005 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0532.xml
|
035 |
|
|
|a (DE-627)NLM159451418
|
035 |
|
|
|a (NLM)16342990
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Fitchett, Brian D
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Interfacial tension and electrocapillary measurements of the room temperature ionic liquid/aqueous interface
|
264 |
|
1 |
|c 2005
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.07.2007
|
500 |
|
|
|a Date Revised 13.12.2005
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The surface and aqueous interfacial tensions for a series of water-immiscible room-temperature ionic liquids (RTILs) have been measured. The RTILs used in this study were based on 1-alkyl-3-methylimidazolium cations (Cnmim, n=6, 8, 10, and 12) and bis(perfluoromethylsulfonyl)imide (BMSI) and bis(perfluoroethylsulfonyl)imide (BETI) anions. It was found that the surface tensions of the RTILs increased with an increasing cation chain length similar to the behavior of n-alkanes. Interfacial tensions of the RTILs with aqueous solutions, however, were found to decrease with the cation chain length, which has been attributed to the increased surface activity of the longer chain cations. We have also demonstrated the first use of electrocapillary measurements to study the polarizable RTIL/aqueous interfaces. From the electrocapillary data, the potential of zero charge (PZC) for these RTIL/aqueous interfaces was determined, as well as the relative surface excess charge and capacitance. The PZC was found to be dependent upon the structure of the anions and cations with PZC values ranging from -357 mV for C6mimBETI and -161 mV for C10mimBMSI. The electrocapillary results also show that the cations of the RTIL are becoming increasingly surface-active as the alkyl chain on the cation is lengthened, thereby modulating the interfacial potential
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Rollins, Julie B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Conboy, John C
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1991
|g 21(2005), 26 vom: 20. Dez., Seite 12179-86
|w (DE-627)NLM098181009
|x 0743-7463
|7 nnns
|
773 |
1 |
8 |
|g volume:21
|g year:2005
|g number:26
|g day:20
|g month:12
|g pages:12179-86
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 21
|j 2005
|e 26
|b 20
|c 12
|h 12179-86
|