Alterations induced by glyphosate on lupin photosynthetic apparatus and nodule ultrastructure and some oxygen diffusion related proteins
The effects of glyphosate on protein metabolism, mesophyll cell ultrastructure and nodule ultrastructure and functioning of Lupinus albus cv. Multolupa inoculated with Bradyrhizobium sp. (Lupinus) were investigated. Young leaves and nodules were especially affected because these organs act as sinks...
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 43(2005), 10-11 vom: 26. Okt., Seite 985-96 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2005
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Plant Proteins Oxygen S88TT14065 Glycine TE7660XO1C |
Zusammenfassung: | The effects of glyphosate on protein metabolism, mesophyll cell ultrastructure and nodule ultrastructure and functioning of Lupinus albus cv. Multolupa inoculated with Bradyrhizobium sp. (Lupinus) were investigated. Young leaves and nodules were especially affected because these organs act as sinks of the herbicide. The alterations on nodular and chloroplast ultrastructure varied depending on herbicide concentration and time of exposure. After 3 days of 2.5 mM glyphosate application some toxic effects were detected. The most important alterations on nodules were the progressive cellular degradation of plant and bacteroidal cytosol and the rupture of bacteroidal membrane, whilst the peribacteroid membrane of the symbiosomes was preserved. This is the first report on the effect of glyphosate on legume-nodule ultrastructure. Glyphosate inhibited B. sp. (Lupinus) growth at concentrations higher than 62.5 microM. In the mesophyll cells, gradual disorganization of grana and intergrana was observed, loosing the parallel alignment with the chloroplast axis. As in nodules, degradation of membrane systems was observed, with the deformation, and even the rupture, of the tonoplast. These progressive effects were similar to those described in senescence processes. The adverse effects produced on infected zone can be due both to a direct effect of the herbicide on microsymbiont and to an indirect effect of glyphosate action on photosynthetic apparatus. Glyphosate produced changes in nodule cytosol and bacteroid proteins content and polypeptide pattern of leaves and nodules. With respect to proteins related to the oxygen diffusion mechanism, a large decrease in leghemoglobin and glycoproteins (recognized by antibodies MAC236 and MAC265) content was detected, which suggests that the oxygen diffusion mechanisms were also affected by glyphosate |
---|---|
Beschreibung: | Date Completed 02.03.2006 Date Revised 13.12.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |