|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM159267021 |
003 |
DE-627 |
005 |
20231223083810.0 |
007 |
tu |
008 |
231223s2006 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0531.xml
|
035 |
|
|
|a (DE-627)NLM159267021
|
035 |
|
|
|a (NLM)16323162
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hu, Jie
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Monte Carlo simulations of biomolecules
|b The MC module in CHARMM
|
264 |
|
1 |
|c 2006
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.04.2006
|
500 |
|
|
|a Date Revised 21.11.2013
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright 2005 Wiley Periodicals, Inc.
|
520 |
|
|
|a We describe the implementation of a general and flexible Monte Carlo (MC) module for the program CHARMM, which is used widely for modeling biomolecular systems with empirical energy functions. Construction and use of an almost arbitrary move set with only a few commands is made possible by providing several predefined types of moves that can be combined. Sampling can be enhanced by noncanonical acceptance criteria, automatic optimization of step sizes, and energy minimization. A systematic procedure for improving MC move sets is introduced and applied to simulations of two peptides. The resulting move sets allow MC to sample the configuration spaces of these systems much more rapidly than Langevin dynamics. The rate of convergence of the difference in free energy between ethane and methanol in explicit solvent is also examined, and comparable performances are observed for MC and the Nosé-Hoover algorithm. Its ease of use combined with its sampling efficiency make the MC module in CHARMM an attractive alternative for exploring the behavior of biomolecular systems
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Dipeptides
|2 NLM
|
650 |
|
7 |
|a Oligopeptides
|2 NLM
|
650 |
|
7 |
|a Solvents
|2 NLM
|
650 |
|
7 |
|a Ethane
|2 NLM
|
650 |
|
7 |
|a L99N5N533T
|2 NLM
|
650 |
|
7 |
|a Alanine
|2 NLM
|
650 |
|
7 |
|a OF5P57N2ZX
|2 NLM
|
650 |
|
7 |
|a Methanol
|2 NLM
|
650 |
|
7 |
|a Y4S76JWI15
|2 NLM
|
700 |
1 |
|
|a Ma, Ao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dinner, Aaron R
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 27(2006), 2 vom: 30. Jan., Seite 203-16
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2006
|g number:2
|g day:30
|g month:01
|g pages:203-16
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2006
|e 2
|b 30
|c 01
|h 203-16
|