Steric repulsion between internal aqueous droplets and the external aqueous phase in double emulsions

A theoretical model for analyzing the steric repulsion energy between internal aqueous droplets and the external aqueous phase in double emulsions, which results from the steric interaction between the surfactant molecules adsorbed at the two interfaces, has been established. The steric interaction...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 21(2005), 25 vom: 06. Dez., Seite 12047-52
1. Verfasser: Cheng, Jing (VerfasserIn)
Weitere Verfasser: Xu, Shiai, Wen, Lixiong, Chen, Jianfeng
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Emulsions Surface-Active Agents Water 059QF0KO0R
Beschreibung
Zusammenfassung:A theoretical model for analyzing the steric repulsion energy between internal aqueous droplets and the external aqueous phase in double emulsions, which results from the steric interaction between the surfactant molecules adsorbed at the two interfaces, has been established. The steric interaction is dependent on the separation distance between the internal aqueous droplets and the external aqueous phase, the thicknesses of the two adsorbed surfactant layers, and the size of the internal aqueous droplets and the oil globules, all of which determine the extent of the compression of the adsorbed surfactant molecules. The thickness of each of the two surfactant layers have the same effect on the steric repulsion, and stronger steric interaction can be achieved with thicker adsorbed layers, which can effectively prevent coalescence between the internal aqueous droplets and the external aqueous phase. Increasing the internal aqueous droplet size can produce stronger steric repulsion; however, larger oil globules will weaken the steric repulsion, indicating that a more stable double-emulsion system can be achieved by preparing the system with smaller oil globules and larger internal aqueous droplets
Beschreibung:Date Completed 23.04.2016
Date Revised 03.12.2018
published: Print
Citation Status MEDLINE
ISSN:1520-5827