|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM158914856 |
003 |
DE-627 |
005 |
20231223083118.0 |
007 |
tu |
008 |
231223s2005 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0530.xml
|
035 |
|
|
|a (DE-627)NLM158914856
|
035 |
|
|
|a (NLM)16285773
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Paul, Kristian W
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Effect of dehydration on sulfate coordination and speciation at the Fe-(hydr)oxide-water interface
|b a molecular orbital/density functional theory and Fourier transform infrared spectroscopic investigation
|
264 |
|
1 |
|c 2005
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 05.04.2007
|
500 |
|
|
|a Date Revised 15.11.2005
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The effect of dehydration on the coordination and speciation of sulfate at the Fe-(hydr)oxide-H2O interface was investigated using molecular orbital/density functional theory (MO/DFT) and Fourier transform infrared (FTIR) spectroscopy. IR frequency calculations were performed at the UB3LYP/6-31+G(d) level of theory for potential sulfate (bidentate bridging, monodentate, and H-bonded) and bisulfate (bidentate bridging and monodentate) surface complexes. MO/DFT calculated IR frequencies were compared to available IR literature results and attenuated total reflectance (ATR) FTIR spectra collected in our laboratory of sulfate adsorbed at the hematite-H2O interface. IR frequency calculations performed using the larger 6-311+G(d,p) basis set resulted in minor frequency shifts that did not dramatically alter the agreement with experiment. This investigation proposes that sulfate undergoes a speciation change as a function of surface dehydration. A generalized model for the speciation change is proposed as follows. (1) At the Fe-(hydr)oxide-H2O interface, sulfate adsorbs as a bidentate bridging or monodentate surface complex under most experimental conditions. (2) Upon surface dehydration, sulfate changes speciation to form bidentate bridging and/or monodentate bisulfate. However, surface dehydration does not yield 100% speciation change but leads to a mixture of sulfate and bisulfate. (3) The speciation change is reversible as a function of rehydration. The reversibility of the sulfate-bisulfate speciation change is chiefly determined by the local hydration environment of the O-H bond in bisulfate. Under dehydrated conditions, the O-H bond length is approximately 0.98 A. The bond length substantially increases (bond strength decreases) to approximately 1.03 A when the initial H-bond network is re-established through hydration, likely leading to deprotonation upon full mineral surface hydration
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Borda, Michael J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kubicki, James D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sparks, Donald L
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 21(2005), 24 vom: 22. Nov., Seite 11071-8
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:21
|g year:2005
|g number:24
|g day:22
|g month:11
|g pages:11071-8
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 21
|j 2005
|e 24
|b 22
|c 11
|h 11071-8
|