A model (in)validation approach to gait classification

This paper addresses the problem of human gait classification from a robust model (in)validation perspective. The main idea is to associate to each class of gaits a nominal model, subject to bounded uncertainty and measurement noise. In this context, the problem of recognizing an activity from a seq...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 27(2005), 11 vom: 29. Nov., Seite 1820-5
1. Verfasser: Mazzaro, María Cecilla (VerfasserIn)
Weitere Verfasser: Sznaier, Mario, Camps, Octavia
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Clinical Trial Journal Article Research Support, U.S. Gov't, Non-P.H.S. Validation Study
LEADER 01000naa a22002652 4500
001 NLM158910931
003 DE-627
005 20231223083114.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0530.xml 
035 |a (DE-627)NLM158910931 
035 |a (NLM)16285379 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mazzaro, María Cecilla  |e verfasserin  |4 aut 
245 1 2 |a A model (in)validation approach to gait classification 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 07.12.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper addresses the problem of human gait classification from a robust model (in)validation perspective. The main idea is to associate to each class of gaits a nominal model, subject to bounded uncertainty and measurement noise. In this context, the problem of recognizing an activity from a sequence of frames can be formulated as the problem of determining whether this sequence could have been generated by a given (model, uncertainty, and noise) triple. By exploiting interpolation theory, this problem can be recast into a nonconvex optimization. In order to efficiently solve it, we propose two convex relaxations, one deterministic and one stochastic. As we illustrate experimentally, these relaxations achieve over 83 percent and 86 percent success rates, respectively, even in the face of noisy data 
650 4 |a Clinical Trial 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Validation Study 
700 1 |a Sznaier, Mario  |e verfasserin  |4 aut 
700 1 |a Camps, Octavia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 27(2005), 11 vom: 29. Nov., Seite 1820-5  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:27  |g year:2005  |g number:11  |g day:29  |g month:11  |g pages:1820-5 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2005  |e 11  |b 29  |c 11  |h 1820-5