No-reference quality assessment using natural scene statistics : JPEG2000

Measurement of image or video quality is crucial for many image-processing algorithms, such as acquisition, compression, restoration, enhancement, and reproduction. Traditionally, image quality assessment (QA) algorithms interpret image quality as similarity with a "reference" or "per...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 14(2005), 11 vom: 21. Nov., Seite 1918-27
1. Verfasser: Sheikh, Hamid Rahim (VerfasserIn)
Weitere Verfasser: Bovik, Alan Conrad, Cormack, Lawrence
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM158853806
003 DE-627
005 20231223083008.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0530.xml 
035 |a (DE-627)NLM158853806 
035 |a (NLM)16279189 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sheikh, Hamid Rahim  |e verfasserin  |4 aut 
245 1 0 |a No-reference quality assessment using natural scene statistics  |b JPEG2000 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 07.12.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Measurement of image or video quality is crucial for many image-processing algorithms, such as acquisition, compression, restoration, enhancement, and reproduction. Traditionally, image quality assessment (QA) algorithms interpret image quality as similarity with a "reference" or "perfect" image. The obvious limitation of this approach is that the reference image or video may not be available to the QA algorithm. The field of blind, or no-reference, QA, in which image quality is predicted without the reference image or video, has been largely unexplored, with algorithms focusing mostly on measuring the blocking artifacts. Emerging image and video compression technologies can avoid the dreaded blocking artifact by using various mechanisms, but they introduce other types of distortions, specifically blurring and ringing. In this paper, we propose to use natural scene statistics (NSS) to blindly measure the quality of images compressed by JPEG2000 (or any other wavelet based) image coder. We claim that natural scenes contain nonlinear dependencies that are disturbed by the compression process, and that this disturbance can be quantified and related to human perceptions of quality. We train and test our algorithm with data from human subjects, and show that reasonably comprehensive NSS models can help us in making blind, but accurate, predictions of quality. Our algorithm performs close to the limit imposed on useful prediction by the variability between human subjects 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Bovik, Alan Conrad  |e verfasserin  |4 aut 
700 1 |a Cormack, Lawrence  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 14(2005), 11 vom: 21. Nov., Seite 1918-27  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:14  |g year:2005  |g number:11  |g day:21  |g month:11  |g pages:1918-27 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 14  |j 2005  |e 11  |b 21  |c 11  |h 1918-27