A multifunctional bicupin serves as precursor for a chromosomal protein of Pisum sativum seeds

The fact that the psp54 gene codes for p16, a seed chromatin protein of Pisum sativum, has been described previously. In the present paper it is shown that p54, the p16 precursor, also exists as a free polypeptide in pea and that it also yields p38, a second polypeptide from the N-terminal region of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 56(2005), 422 vom: 01. Dez., Seite 3159-69
1. Verfasser: Castillo, Josefa (VerfasserIn)
Weitere Verfasser: Genovés, Ainhoa, Franco, Luis, Rodrigo, M Isabel
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Chromosomal Proteins, Non-Histone Plant Proteins Protein Precursors RNA, Messenger Abscisic Acid 72S9A8J5GW
Beschreibung
Zusammenfassung:The fact that the psp54 gene codes for p16, a seed chromatin protein of Pisum sativum, has been described previously. In the present paper it is shown that p54, the p16 precursor, also exists as a free polypeptide in pea and that it also yields p38, a second polypeptide from the N-terminal region of p54, which is co-localized at a subcellular level with p16. By using antibodies against pea p16 and p38, it was found that these proteins are present in the members of the tribe Viciae examined. Sequence analysis and 3D modelling indicates that p54 proteins belong to the cupin superfamily, and that they are related to sucrose binding proteins and, to a lesser extent, to vicilin-type seed storage proteins. Nevertheless, several distinctive characteristics of psp54 expression have been found: (i) the gene is differentially induced by ABA and several stress situations, in accordance with the presence of putative separate ABA and stress responsive elements in its promoter; (ii) the proteins are present in pods and seed coats, tissues of maternal origin; and (iii) p54 mRNA accumulates in the dry seeds. In view of both the functional properties of p54-derived proteins and the features of the psp54 gene expression, it is concluded that p54 represents a novel class within the cupin superfamily
Beschreibung:Date Completed 20.01.2006
Date Revised 09.01.2024
published: Print-Electronic
GENBANK: AY822015
Citation Status MEDLINE
ISSN:1460-2431