Computational predictions of stable 2D arrays of bidisperse particles

We study computationally the stability of various 2D arrays of bidisperse mixtures of stabilized nanoparticles through a melting simulation employing the Metropolis algorithm for determining surface diffusion. In our previous work [Langmuir 2004, 20, 9408], we studied computationally the stability o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 21(2005), 23 vom: 08. Nov., Seite 10856-61
1. Verfasser: Rabideau, Brooks D (VerfasserIn)
Weitere Verfasser: Bonnecaze, Roger T
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM158702239
003 DE-627
005 20231223082705.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0529.xml 
035 |a (DE-627)NLM158702239 
035 |a (NLM)16262363 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rabideau, Brooks D  |e verfasserin  |4 aut 
245 1 0 |a Computational predictions of stable 2D arrays of bidisperse particles 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 04.05.2007 
500 |a Date Revised 02.11.2005 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We study computationally the stability of various 2D arrays of bidisperse mixtures of stabilized nanoparticles through a melting simulation employing the Metropolis algorithm for determining surface diffusion. In our previous work [Langmuir 2004, 20, 9408], we studied computationally the stability of bidispersed monolayers of thiol-stabilized gold nanoparticles with a size ratio (sigma) of 0.375. We found that interparticle forces were essential to stabilize the LS (the two-dimensional NaCl analogue) lattice at the experimentally determined surface coverage. In this paper, we extend our study to determine the conditions necessary to form stable LS(2), LS(4), and LS(6) lattices, which have yet to be observed. Using a simple design rule that involves matching the distances between either large-large particles and large-small particles or large-small particles and small-small particles to correspond to the respective potential minima leads to predictions for size ratios that will form each desired lattice, given other parameters characterizing the systems' physical properties. We predict and verify computationally LS(2), LS(4), and LS(6) lattices at relatively low surface coverages. Additional simulations show that the LS, LS(2), and LS(6) lattices are indeed stable structures at their predicted surface coverage, whereas the LS(4) lattice is a metastable structure; however, a modest increase in the surface coverage of the LS(4) lattice converts it to a stable rather than long-lived metastable structure. This study may be used as a guide for experimentalists in their search for these novel structures 
650 4 |a Journal Article 
700 1 |a Bonnecaze, Roger T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 21(2005), 23 vom: 08. Nov., Seite 10856-61  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:21  |g year:2005  |g number:23  |g day:08  |g month:11  |g pages:10856-61 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 21  |j 2005  |e 23  |b 08  |c 11  |h 10856-61