Amino Acid based cationic surfactants in aqueous solution : physicochemical study and application of supramolecular chirality in ketone reduction

The present study provides a molecular understanding of the origin of the chirality in aqueous micelles and its correlation with the proficiency of stereoselective ketone reduction. The effects of varied headgroup architecture on the surface-active properties as well as on other microstructural para...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 21(2005), 23 vom: 08. Nov., Seite 10398-404
1. Verfasser: Roy, Sangita (VerfasserIn)
Weitere Verfasser: Das, Debapratim, Dasgupta, Antara, Mitra, Rajendra Narayan, Das, Prasanta Kumar
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Amino Acids Cations Ketones Solutions Surface-Active Agents
Beschreibung
Zusammenfassung:The present study provides a molecular understanding of the origin of the chirality in aqueous micelles and its correlation with the proficiency of stereoselective ketone reduction. The effects of varied headgroup architecture on the surface-active properties as well as on other microstructural parameters were studied and correlated to the structural differences of these naturally occurring amino acid containing surfactants (1-4). Micropolarity sensed by pyrene showed that the micelles prepared using 1-4 are mostly hydrated; particularly large headgroup size surfactant produces more polar environment. A theoretical study was done to quantify the varied spatial dissymmetry for all four surfactants. Asymmetric reduction of prochiral ketones was carried out at the aqueous micellar interface of these chiral amphiphiles by exploiting the supramolecular chirality as evidenced from a circular dichroism study. The enantioselectivity of the reduction process is rationally improved through increase in spatial dissymmetry and steric constraint imposed at the micellar interface by the polar head of surfactants
Beschreibung:Date Completed 04.05.2007
Date Revised 02.11.2005
published: Print
Citation Status MEDLINE
ISSN:1520-5827