Different types of hydrogen bonds in 2-substituted pyrroles and 1-vinyl pyrroles as monitored by (1)H, (13)C and (15)N NMR spectroscopy and ab initio calculations
According to the (1)H, (13)C and (15)N NMR spectroscopic data and ab initio calculations, the strong N--H...O intramolecular hydrogen bond in the Z-isomers of 2-(2-acylethenyl)pyrroles causes the decrease in the absolute size of the (1)J(N,H) coupling constant by 2 Hz in CDCl(3) and by 4.5 Hz in DMS...
Veröffentlicht in: | Magnetic resonance in chemistry : MRC. - 1985. - 44(2006), 1 vom: 23. Jan., Seite 59-65 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2006
|
Zugriff auf das übergeordnete Werk: | Magnetic resonance in chemistry : MRC |
Schlagworte: | Journal Article Carbon Isotopes Nitrogen Isotopes Protons Pyrroles |
Zusammenfassung: | According to the (1)H, (13)C and (15)N NMR spectroscopic data and ab initio calculations, the strong N--H...O intramolecular hydrogen bond in the Z-isomers of 2-(2-acylethenyl)pyrroles causes the decrease in the absolute size of the (1)J(N,H) coupling constant by 2 Hz in CDCl(3) and by 4.5 Hz in DMSO-d(6), the deshielding of the proton and nitrogen by 5-6 and 15 ppm, respectively, and the lengthening of the N--H link by 0.025 A. The N--H...N intramolecular hydrogen bond in the 2(2'-pyridyl)pyrrole leads to the increase of the (1)J(N,H) coupling constant by 3 Hz, the deshielding of the proton by 1.5 ppm and the lengthening of the N--H link by 0.004 A. The C--H...N intramolecular hydrogen bond in the 1-vinyl-2-(2'-pyridyl)-pyrrole results in the increase of the (1)J(C,H) coupling constant by 5 Hz, the deshielding of the proton by 1 ppm and the shortening of the C--H link by 0.003 A. Different behavior of the coupling constants and length of the covalent links under the hydrogen bond influence originate from the different nature of the hydrogen bonding (predominantly covalent or electrostatic), which depends in turn on the geometry of the hydrogen bridge. The Fermi-contact mechanism only is responsible for the increase of the coupling constant in the case of the predominantly electrostatic hydrogen bonding, whereas both Fermi-contact and paramagnetic spin-orbital mechanisms bring about the decrease of coupling constant in the case of the predominantly covalent hydrogen bonding |
---|---|
Beschreibung: | Date Completed 10.03.2006 Date Revised 19.12.2005 published: Print Citation Status MEDLINE |
ISSN: | 0749-1581 |