|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM158565789 |
003 |
DE-627 |
005 |
20231223082438.0 |
007 |
tu |
008 |
231223s2006 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0529.xml
|
035 |
|
|
|a (DE-627)NLM158565789
|
035 |
|
|
|a (NLM)16247761
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Beke, Tamás
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Toward a rational design of beta-peptide structures
|
264 |
|
1 |
|c 2006
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.01.2006
|
500 |
|
|
|a Date Revised 15.11.2006
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a (c) 2005 Wiley Periodicals, Inc.
|
520 |
|
|
|a Intrinsic conformational characteristics of beta-peptides built up from simple achiral and chiral beta-amino acid residues (i.e., HCO-beta-Ala-NH2, HCO-beta-Abu-NH2) were studied using quantum chemical calculations and 1H-NMR spectroscopy. A conformer-based systematic and uniform nomenclature was introduced to differentiate conformers. Geometry optimizations were performed on all homoconformers of both HCO-(beta-Ala)(k)-NH2 and HCO-(beta-Abu)(k)-NH2 (1 < or = k < or = 6) model systems at the RHF/3-21G and RHF/6-311++G(d, p) levels of theory. To test for accuracy and precision, additional computations were carried out at several levels of theory [e.g., RHF/6-31G(d), and B3LYP/6-311++G(d, p)]. To display the folding preference, the relative stability of selected conformers as function of the length of the polypeptide chain was determined. Ab initio population distribution of hexapeptides and the conformational ensemble of synthetic models composed of beta-Ala and beta-Abu studied using 1H-NMR in different solvents were compared at a range of temperatures. Helical preference induced by various steric effects of nonpolar side chains was tested using higher level ab initio methods for well-known model systems such as: HCO-(beta-HVal-beta-HAla-beta-HLeu)2-NH2, HCO-(ACHC)6-NH2, HCO-(trans-ACPC)6-NH2, and HCO-(cis-ACPC)6-NH2. The relative stabilities determined by theoretical methods agreed well with most experimental data, supporting the theory that the local conformational preference influenced by steric effects is a key determining factor of the global fold both in solution and in the gas phase
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Oligopeptides
|2 NLM
|
650 |
|
7 |
|a Solvents
|2 NLM
|
700 |
1 |
|
|a Somlai, Csaba
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Perczel, András
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 27(2006), 1 vom: 15. Jan., Seite 20-38
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2006
|g number:1
|g day:15
|g month:01
|g pages:20-38
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2006
|e 1
|b 15
|c 01
|h 20-38
|