Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes

Near-isogenic hybrids (NIHs), developed from crossing maize (Zea mays L.) backcross-derived lines (BDLs) differing for the parental alleles at a major QTL for leaf ABA concentration (L-ABA), were field-tested for 2 years under well-watered and water-stressed conditions. Differences among NIHs for L-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 56(2005), 422 vom: 30. Dez., Seite 3061-70
1. Verfasser: Giuliani, Silvia (VerfasserIn)
Weitere Verfasser: Sanguineti, Maria Corinna, Tuberosa, Roberto, Bellotti, Massimo, Salvi, Silvio, Landi, Pierangelo
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Water 059QF0KO0R Abscisic Acid 72S9A8J5GW
Beschreibung
Zusammenfassung:Near-isogenic hybrids (NIHs), developed from crossing maize (Zea mays L.) backcross-derived lines (BDLs) differing for the parental alleles at a major QTL for leaf ABA concentration (L-ABA), were field-tested for 2 years under well-watered and water-stressed conditions. Differences among NIHs for L-ABA and other morpho-physiological traits were not affected by water regimes. On average, the QTL allele for high L-ABA markedly reduced stomatal conductance and root lodging. To elucidate the effects of the QTL on root architecture and L-ABA, root traits of two pairs of BDLs were measured in plants grown in soil columns at three water regimes. Differences among BDLs were not affected by water regimes. Across water regimes, the QTL confirmed its effect on L-ABA and showed a concurrent effect on root angle, branching, number, diameter, and dry weight. Based on these results, it is concluded that the QTL affects root lodging through a constitutive effect on root architecture. In addition, there is speculation that the QTL effects on root traits and L-ABA are probably due to pleiotropy rather than linkage and a model is proposed in which the QTL has a direct effect on root architecture, while indirectly affecting L-ABA
Beschreibung:Date Completed 20.01.2006
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431