Relevance feedback using generalized Bayesian framework with region-based optimization learning

This paper presents a generalized Bayesian framework for relevance feedback in content-based image retrieval. The proposed feedback technique is based on the Bayesian learning method and incorporates a time-varying user model into the formulation. We define the user model with two terms: a target qu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 14(2005), 10 vom: 01. Okt., Seite 1617-31
1. Verfasser: Hsu, Chiou-Ting (VerfasserIn)
Weitere Verfasser: Li, Chuech-Yu
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM158473302
003 DE-627
005 20250206191833.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0528.xml 
035 |a (DE-627)NLM158473302 
035 |a (NLM)16238066 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hsu, Chiou-Ting  |e verfasserin  |4 aut 
245 1 0 |a Relevance feedback using generalized Bayesian framework with region-based optimization learning 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 15.11.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper presents a generalized Bayesian framework for relevance feedback in content-based image retrieval. The proposed feedback technique is based on the Bayesian learning method and incorporates a time-varying user model into the formulation. We define the user model with two terms: a target query and a user conception. The target query is aimed to learn the common features from relevant images so as to specify the user's ideal query. The user conception is aimed to learn a parameter set to determine the time-varying matching criterion. Therefore, at each feedback step, the learning process updates not only the target distribution, but also the target query and the matching criterion. In addition, another objective of this paper is to conduct the relevance feedback on images represented in region level. We formulate the matching criterion using a weighting scheme and proposed a region clustering technique to determine the region correspondence between relevant images. With the proposed region clustering technique, we derive a representation in region level to characterize the target query. Experiments demonstrate that the proposed method combined with time-varying user model indeed achieves satisfactory results and our proposed region-based techniques further improve the retrieval accuracy 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Li, Chuech-Yu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1997  |g 14(2005), 10 vom: 01. Okt., Seite 1617-31  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:14  |g year:2005  |g number:10  |g day:01  |g month:10  |g pages:1617-31 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 14  |j 2005  |e 10  |b 01  |c 10  |h 1617-31