Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume

Semiconductor quantum dots (QDs) are new fluorescent probes with great promise for ultrasensitive biological imaging. When detected at the single-molecule level, QD-tagged molecules can be observed and tracked in the membrane of live cells over unprecedented durations. The motion of these individual...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 14(2005), 9 vom: 01. Sept., Seite 1384-95
1. Verfasser: Bonneau, Stéphane (VerfasserIn)
Weitere Verfasser: Dahan, Maxime, Cohen, Laurent D
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article
LEADER 01000caa a22002652 4500
001 NLM158029402
003 DE-627
005 20250206174935.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0527.xml 
035 |a (DE-627)NLM158029402 
035 |a (NLM)16190473 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bonneau, Stéphane  |e verfasserin  |4 aut 
245 1 0 |a Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 27.10.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Semiconductor quantum dots (QDs) are new fluorescent probes with great promise for ultrasensitive biological imaging. When detected at the single-molecule level, QD-tagged molecules can be observed and tracked in the membrane of live cells over unprecedented durations. The motion of these individual molecules, recorded in sequences of fluorescence images, can reveal aspects of the dynamics of cellular processes that remain hidden in conventional ensemble imaging. Due to QD complex optical properties, such as fluorescence intermittency, the quantitative analysis of these sequences is, however, challenging and requires advanced algorithms. We present here a novel approach, which, instead of a frame by frame analysis, is based on perceptual grouping in a spatiotemporal volume. By applying a detection process based on an image fluorescence model, we first obtain an unstructured set of points. Individual molecular trajectories are then considered as minimal paths in a Riemannian metric derived from the fluorescence image stack. These paths are computed with a variant of the fast marching method and few parameters are required. We demonstrate the ability of our algorithm to track intermittent objects both in sequences of synthetic data and in experimental measurements obtained with individual QD-tagged receptors in the membrane of live neurons. While developed for tracking QDs, this method can, however, be used with any fluorescent probes 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Dahan, Maxime  |e verfasserin  |4 aut 
700 1 |a Cohen, Laurent D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1997  |g 14(2005), 9 vom: 01. Sept., Seite 1384-95  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:14  |g year:2005  |g number:9  |g day:01  |g month:09  |g pages:1384-95 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 14  |j 2005  |e 9  |b 01  |c 09  |h 1384-95