|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM158029364 |
003 |
DE-627 |
005 |
20231223081358.0 |
007 |
tu |
008 |
231223s2005 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0527.xml
|
035 |
|
|
|a (DE-627)NLM158029364
|
035 |
|
|
|a (NLM)16190469
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Abdul-Karim, Muhammad-Amri
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Automatic selection of parameters for vessel/neurite segmentation algorithms
|
264 |
|
1 |
|c 2005
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.10.2005
|
500 |
|
|
|a Date Revised 26.10.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a An automated method is presented for selecting optimal parameter settings for vessel/neurite segmentation algorithms using the minimum description length principle and a recursive random search algorithm. It trades off a probabilistic measure of image-content coverage against its conciseness. It enables nonexpert users to select parameter settings objectively, without knowledge of underlying algorithms, broadening the applicability of the segmentation algorithm, and delivering higher morphometric accuracy. It enables adaptation of parameters across batches of images. It simplifies the user interface to just one optional parameter and reduces the cost of technical support. Finally, the method is modular, extensible, and amenable to parallel computation. The method is applied to 223 images of human retinas and cultured neurons, from four different sources, using a single segmentation algorithm with eight parameters. Improvements in segmentation quality compared to default settings using 1000 iterations ranged from 4.7%-21%. Paired t-tests showed that improvements are statistically significant (p < 0.0005). Most of the improvement occurred in the first 44 iterations. Improvements in description lengths and agreement with the ground truth were strongly correlated (p = 0.78)
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, N.I.H., Extramural
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a Research Support, U.S. Gov't, P.H.S.
|
700 |
1 |
|
|a Roysam, Badrinath
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dowell-Mesfin, Natalie M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jeromin, Andreas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yuksel, Murat
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kalyanaraman, Shivkumar
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 14(2005), 9 vom: 01. Sept., Seite 1338-50
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:14
|g year:2005
|g number:9
|g day:01
|g month:09
|g pages:1338-50
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 14
|j 2005
|e 9
|b 01
|c 09
|h 1338-50
|