An adaptive multirate algorithm for acquisition of fluorescence microscopy data sets

We propose an algorithm for adaptive efficient acquisition of fluorescence microscopy data sets using a multirate (MR) approach. We simulate acquisition as part of a larger system for protein classification based on their subcellular location patterns and, thus, strive to maintain the achieved level...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 14(2005), 9 vom: 01. Sept., Seite 1246-53
1. Verfasser: Merryman, Thomas E (VerfasserIn)
Weitere Verfasser: Kovacević, Jelena
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Comparative Study Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM158029283
003 DE-627
005 20231223081358.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0527.xml 
035 |a (DE-627)NLM158029283 
035 |a (NLM)16190461 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Merryman, Thomas E  |e verfasserin  |4 aut 
245 1 3 |a An adaptive multirate algorithm for acquisition of fluorescence microscopy data sets 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 27.10.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We propose an algorithm for adaptive efficient acquisition of fluorescence microscopy data sets using a multirate (MR) approach. We simulate acquisition as part of a larger system for protein classification based on their subcellular location patterns and, thus, strive to maintain the achieved level of classification accuracy as much as possible. This problem is similar to image compression but unique due to additional restrictions, namely causality; we have access only to the information scanned up to that point. While we do want to acquire fewer samples with as low distortion as possible to achieve compression, our goal is to do so while affecting the overall classification accuracy as little as possible. We achieve this by using an adaptive MR scanning scheme which samples the regions of the image area that hold the most pertinent information. Our results show that we can achieve significant compression which we can then use to aquire faster or to increase space resolution of our data set, all while minimally affecting the classification accuracy of the entire system 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Kovacević, Jelena  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 14(2005), 9 vom: 01. Sept., Seite 1246-53  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:14  |g year:2005  |g number:9  |g day:01  |g month:09  |g pages:1246-53 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 14  |j 2005  |e 9  |b 01  |c 09  |h 1246-53