Gaining insight into the nanoscale properties of sol-gel-derived silicate thin films by single-molecule spectroscopy

The application of single-molecule spectroscopic methods in studies of individual nanoscale environments within sol-gel-derived silicate thin films is reviewed. Representative examples of the experiments performed and results obtained in several studies from the authors' laboratories are given....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 21(2005), 20 vom: 27. Sept., Seite 9023-31
1. Verfasser: Higgins, Daniel A (VerfasserIn)
Weitere Verfasser: Collinson, Maryanne M
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The application of single-molecule spectroscopic methods in studies of individual nanoscale environments within sol-gel-derived silicate thin films is reviewed. Representative examples of the experiments performed and results obtained in several studies from the authors' laboratories are given. Included are investigations of the static and dynamic polarity properties of organically modified silicate (ORMOSIL) films. The results of these studies point to nonrandom variations in the film properties, providing strong evidence for the formation of phase-separated organic- and inorganic-rich domains. Studies of single-molecule diffusion through the same films yield important evidence for the formation of liquidlike silicate oligomers that facilitate probe molecule diffusion. Finally, single-molecule studies of the local pH within individual film environments are discussed. Valuable information on the contributions of local materials' acidity variations to overall sample heterogeneity is obtained. The results of immersion studies indicate that certain molecular environments are inaccessible to external solutions over periods as long as a few hours. The article concludes with a discussion of possible future challenges in this research that may be addressed by new and existing single-molecule methods
Beschreibung:Date Completed 17.04.2007
Date Revised 20.09.2005
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827