Topological methods for 2D time-dependent vector fields based on stream lines and path lines

This paper describes approaches to topologically segmenting 2D time-dependent vector fields. For this class of vector fields, two important classes of lines exist: stream lines and path lines. Because of this, two segmentations are possible: either concerning the behavior of stream lines or of path...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 11(2005), 4 vom: 28. Juli, Seite 383-94
1. Verfasser: Theisel, Holger (VerfasserIn)
Weitere Verfasser: Weinkauf, Tino, Hege, Hans-Christian, Seidel, Hans-Peter
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Evaluation Study Journal Article
LEADER 01000naa a22002652 4500
001 NLM157555992
003 DE-627
005 20231223080433.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0525.xml 
035 |a (DE-627)NLM157555992 
035 |a (NLM)16138549 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Theisel, Holger  |e verfasserin  |4 aut 
245 1 0 |a Topological methods for 2D time-dependent vector fields based on stream lines and path lines 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 23.09.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper describes approaches to topologically segmenting 2D time-dependent vector fields. For this class of vector fields, two important classes of lines exist: stream lines and path lines. Because of this, two segmentations are possible: either concerning the behavior of stream lines or of path lines. While topological features based on stream lines are well established, we introduce path line oriented topology as a new visualization approach in this paper. As a contribution to stream line oriented topology, we introduce new methods to detect global bifurcations like saddle connections and cyclic fold bifurcations as well as a method of tracking all isolated closed stream lines. To get the path line oriented topology, we segment the vector field into areas of attracting, repelling, and saddle-like behavior of the path lines. We compare both kinds of topologies and apply them to a number of test data sets 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Weinkauf, Tino  |e verfasserin  |4 aut 
700 1 |a Hege, Hans-Christian  |e verfasserin  |4 aut 
700 1 |a Seidel, Hans-Peter  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 11(2005), 4 vom: 28. Juli, Seite 383-94  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:11  |g year:2005  |g number:4  |g day:28  |g month:07  |g pages:383-94 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 11  |j 2005  |e 4  |b 28  |c 07  |h 383-94