Parametric reconstruction of generalized cylinders from limb edges

The three-dimensional (3-D) reconstruction of generalized cylinders (GCs) is an important research field in computer vision. One of the main difficulties is that some contour features in images cannot be reconstructed by traditional stereovision because they do not correspond to reflectance disconti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 14(2005), 8 vom: 25. Aug., Seite 1202-14
1. Verfasser: Pan, Chunhong (VerfasserIn)
Weitere Verfasser: Yan, Hongping, Medioni, Gérard, Ma, Songde
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The three-dimensional (3-D) reconstruction of generalized cylinders (GCs) is an important research field in computer vision. One of the main difficulties is that some contour features in images cannot be reconstructed by traditional stereovision because they do not correspond to reflectance discontinuities of surface in space. In this paper, we present a novel, parametric approach for the 3-D reconstruction of circular generalized cylinders (CGCs) only from the limb edges of CGCs in two images. Instead of exploiting the invariant and quasiinvariant properties of some specific subclasses of GCs in projections, our reconstruction is achieved by some general assumptions on GCs, and can, therefore, be applied to a broader subclass of GCs. In order to improve robustness, we perform the extraction and labeling of the limb edge interactively, and estimate the epipolar geometry between two images by an optimal algorithm. Then, for different types of GCs, three kinds of symmetries (parallel symmetry, skew symmetry, and local smooth symmetry) are employed to compute the symmetry of limb edges. The surface points corresponding to limb edges in images are reconstructed by integrating the recovered epipolar geometry and the properties induced from the assumptions that we make on the GCs. Finally, a homography-based method is exploited to further refine the 3-D description of the GC with a coplanar curved axis
Beschreibung:Date Completed 16.09.2005
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:1941-0042