On the Euclidean distance of images

We present a new Euclidean distance for images, which we call IMage Euclidean Distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 27(2005), 8 vom: 07. Aug., Seite 1334-9
1. Verfasser: Wang, Liwei (VerfasserIn)
Weitere Verfasser: Zhang, Yan, Feng, Jufu
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:We present a new Euclidean distance for images, which we call IMage Euclidean Distance (IMED). Unlike the traditional Euclidean distance, IMED takes into account the spatial relationships of pixels. Therefore, it is robust to small perturbation of images. We argue that IMED is the only intuitively reasonable Euclidean distance for images. IMED is then applied to image recognition. The key advantage of this distance measure is that it can be embedded in most image classification techniques such as SVM, LDA, and PCA. The embedding is rather efficient by involving a transformation referred to as Standardizing Transform (ST). We show that ST is a transform domain smoothing. Using the Face Recognition Technology (FERET) database and two state-of-the-art face identification algorithms, we demonstrate a consistent performance improvement of the algorithms embedded with the new metric over their original versions
Beschreibung:Date Completed 16.09.2005
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:1939-3539