Sparse Bayesian learning for efficient visual tracking

This paper extends the use of statistical learning algorithms for object localization. It has been shown that object recognizers using kernel-SVMs can be elegantly adapted to localization by means of spatial perturbation of the SVM. While this SVM applies to each frame of a video independently of ot...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 27(2005), 8 vom: 07. Aug., Seite 1292-304
1. Verfasser: Williams, Oliver (VerfasserIn)
Weitere Verfasser: Blake, Andrew, Cipolla, Roberto
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Evaluation Study Journal Article
LEADER 01000caa a22002652c 4500
001 NLM157374025
003 DE-627
005 20250206154104.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0525.xml 
035 |a (DE-627)NLM157374025 
035 |a (NLM)16119267 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Williams, Oliver  |e verfasserin  |4 aut 
245 1 0 |a Sparse Bayesian learning for efficient visual tracking 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 16.09.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper extends the use of statistical learning algorithms for object localization. It has been shown that object recognizers using kernel-SVMs can be elegantly adapted to localization by means of spatial perturbation of the SVM. While this SVM applies to each frame of a video independently of other frames, the benefits of temporal fusion of data are well-known. This is addressed here by using a fully probabilistic Relevance Vector Machine (RVM) to generate observations with Gaussian distributions that can be fused over time. Rather than adapting a recognizer, we build a displacement expert which directly estimates displacement from the target region. An object detector is used in tandem, for object verification, providing the capability for automatic initialization and recovery. This approach is demonstrated in real-time tracking systems where the sparsity of the RVM means that only a fraction of CPU time is required to track at frame rate. An experimental evaluation compares this approach to the state of the art showing it to be a viable method for long-term region tracking 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Blake, Andrew  |e verfasserin  |4 aut 
700 1 |a Cipolla, Roberto  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 27(2005), 8 vom: 07. Aug., Seite 1292-304  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:27  |g year:2005  |g number:8  |g day:07  |g month:08  |g pages:1292-304 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2005  |e 8  |b 07  |c 08  |h 1292-304