Extension to the definition of quasistatic material coupling factor to include losses

In general the coupling factor is a dimensionless coefficient, defined as a particular combination of the dielectric, elastic, and piezoelectric coefficients that may be useful for the internal energy conversion description in piezoelectric materials. In order to extend the definition of the quasist...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1999. - 52(2005), 6 vom: 07. Juni, Seite 1026-34
1. Verfasser: Lamberti, Nicola (VerfasserIn)
Weitere Verfasser: Sherrit, Stewart, Pappalardo, Massimo, Iula, Antonio
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM157371204
003 DE-627
005 20250206154037.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0525.xml 
035 |a (DE-627)NLM157371204 
035 |a (NLM)16118984 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lamberti, Nicola  |e verfasserin  |4 aut 
245 1 0 |a Extension to the definition of quasistatic material coupling factor to include losses 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 23.09.2005 
500 |a Date Revised 17.09.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In general the coupling factor is a dimensionless coefficient, defined as a particular combination of the dielectric, elastic, and piezoelectric coefficients that may be useful for the internal energy conversion description in piezoelectric materials. In order to extend the definition of the quasistatic coupling factor as ratio of energies to dynamic conditions and to lossy materials, its current definition and its derivation are reviewed. It is shown that this parameter can be computed as ratio of energies also in dynamic conditions, and the factors obtained in the static and the dynamic case are simply related by a proportionality coefficient. The coupling factor is computed as the square root of the ratio between the converted (from mechanical to electrical or vice versa) and the total energy involved in a transformation cycle for lossy materials in quasistatic conditions, obtaining a complex quantity related to the complex material parameters taking the losses into account. In order to apply this definition to the element vibrating around its resonance frequency, the kinetic is considered as the total energy and the electrical potential as the converted energy. The obtained result is a complex quantity related to the complex material coupling factor by means of the same proportionality coefficient of the case without losses. Finally, it is shown that both the material and the dynamic coupling factors still can be considered as real parameters for real lossy materials. It also is shown that the obtained results do not depend on the wave propagation direction (longitudinal or transverse) 
650 4 |a Journal Article 
700 1 |a Sherrit, Stewart  |e verfasserin  |4 aut 
700 1 |a Pappalardo, Massimo  |e verfasserin  |4 aut 
700 1 |a Iula, Antonio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1999  |g 52(2005), 6 vom: 07. Juni, Seite 1026-34  |w (DE-627)NLM098181017  |x 0885-3010  |7 nnns 
773 1 8 |g volume:52  |g year:2005  |g number:6  |g day:07  |g month:06  |g pages:1026-34 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 52  |j 2005  |e 6  |b 07  |c 06  |h 1026-34