Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops

An optical technique based on the reflectivity measurements of a thin film was used to experimentally study the spreading, evaporation, contact line motion, and thin film characteristics of drops consisting of a water-surfactant (polyalkyleneoxide-modified heptamethyltrisiloxane, called superspreade...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 21(2005), 18 vom: 30. Aug., Seite 8188-97
1. Verfasser: Gokhale, Shripad J (VerfasserIn)
Weitere Verfasser: Plawsky, Joel L, Wayner, Peter C Jr
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Solutions Surface-Active Agents
LEADER 01000naa a22002652 4500
001 NLM15733192X
003 DE-627
005 20231223075946.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0525.xml 
035 |a (DE-627)NLM15733192X 
035 |a (NLM)16114921 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gokhale, Shripad J  |e verfasserin  |4 aut 
245 1 0 |a Spreading, evaporation, and contact line dynamics of surfactant-laden microdrops 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 20.03.2007 
500 |a Date Revised 23.08.2005 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a An optical technique based on the reflectivity measurements of a thin film was used to experimentally study the spreading, evaporation, contact line motion, and thin film characteristics of drops consisting of a water-surfactant (polyalkyleneoxide-modified heptamethyltrisiloxane, called superspreader) solution on a fused silica surface. On the basis of the experimental observations, we concluded that the surfactant adsorbs primarily at the solid-liquid and liquid-vapor interfaces near the contact line region. At equilibrium, the completely wetting corner meniscus was associated with a flat adsorbed film having a thickness of approximately 31 nm. The calculated Hamaker constant, A = -4.47 x 10(-)(20) J, shows that this thin film was stable under equilibrium conditions. During a subsequent evaporation/condensation phase-change process, the thin film of the surfactant solution was unstable, and it broke into microdrops having a finite contact angle. The thickness of the adsorbed film associated with the drops was lower than that of the equilibrium meniscus. The drop profiles were experimentally measured and analyzed during the phase-change process as the contact line advanced and receded. The apparent contact angle, the maximum concave curvature near the contact line region, and the convex curvature of the drop increased as the drop grew during condensation, whereas these quantities decreased during evaporation. The position of the maximum concave curvature of the drop moved toward the center of the drop during condensation, whereas it moved away from the center during evaporation. The contact line velocity was correlated to the observed experimental results and was compared with the results of the drops of a pure alcohol. The experimentally obtained thickness profiles, contact angle profiles, and curvature profiles of the drops explain how the surfactant adsorption affects the contact line motion. We found that there was an abrupt change in the velocity of the contact line when the adsorbed film of the surfactant solution was just hydrated or desiccated during the phase-change processes. This result shows the effect of vesicles and aggregates of the surfactant on the shape evolution of the drops. For these surfactant-laden water drops, we found that the apparent contact angle increased during condensation and decreased during evaporation. However, for the drop of a pure liquid (n-butanol and 2-propanol) the apparent contact angle remained constant at a constant velocity during condensation and evaporation. The contact line was pinned during the evaporation and spreading of the surfactant-laden water drops, but it was not pinned for a drop of a pure alcohol (self-similar shape evolution) 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Solutions  |2 NLM 
650 7 |a Surface-Active Agents  |2 NLM 
700 1 |a Plawsky, Joel L  |e verfasserin  |4 aut 
700 1 |a Wayner, Peter C  |c Jr  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 21(2005), 18 vom: 30. Aug., Seite 8188-97  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:21  |g year:2005  |g number:18  |g day:30  |g month:08  |g pages:8188-97 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 21  |j 2005  |e 18  |b 30  |c 08  |h 8188-97