Micropore to macropore structure-designed silicas with regulated condensation of silicic acid nanoparticles
A new preparation method for porous silica particles was developed using activated silica sols which are called nano-silica solutions in this paper. Several kinds of organic and inorganic acids are employed to neutralize diluted sodium silicate solutions to form the nano-silica solutions: formic aci...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 21(2005), 17 vom: 16. Aug., Seite 8042-7 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2005
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | A new preparation method for porous silica particles was developed using activated silica sols which are called nano-silica solutions in this paper. Several kinds of organic and inorganic acids are employed to neutralize diluted sodium silicate solutions to form the nano-silica solutions: formic acid, acetic acid, propionic acid, oxalic acid, succinic acid, dl-malic acid, citric acid, and tricarballylic acid as carboxylic acids, and sulfuric acid and hydrochloric acid as inorganic acids. The effect of salts in the nano-silica solution is also studied. The products were investigated using a field emission scanning electron microscope, an X-ray diffractometer, the nitrogen adsorption technique, and a mercury porosimeter. Microporous silicas were produced when carboxylic acids were applied; the formation of micropores was influenced by the pH of the nano-silica solutions and molecular sizes of the carboxylic acids. Addition of a salt in a citric acid solution increased the mesopore volume. Macropores were formed when inorganic acids including salts were applied; the salt nanoparticles which were crystallized in silica spheres acted as templates. The anion types and salt concentrations in the nano-silica solutions affected the aggregation condition of silica nanoparticles, following the Schulze-Hardy rule |
---|---|
Beschreibung: | Date Completed 03.04.2007 Date Revised 10.08.2005 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |