|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM156415496 |
003 |
DE-627 |
005 |
20231223074121.0 |
007 |
tu |
008 |
231223s2005 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0522.xml
|
035 |
|
|
|a (DE-627)NLM156415496
|
035 |
|
|
|a (NLM)16003962
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Park, D
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Continuous biological ferrous iron oxidation in a submerged membrane bioreactor
|
264 |
|
1 |
|c 2005
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 30.08.2005
|
500 |
|
|
|a Date Revised 21.11.2013
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Microbial oxidation of ferrous iron may be available alternative method of producing ferric iron, which is a reagent used for removal of H2S from biogas. In this study, a submerged membrane bioreactor (MBR) system was employed to oxidize ferrous iron to ferric iron. In the submerged MBR system, we could keep high concentration of iron-oxidizing bacteria and high oxidation rate of ferrous iron. There was membrane fouling caused by chemical precipitates such as K-jarosite and ferric phosphate. However, a strong acidity (pH 1.75) of solution and low ferrous iron concentration (below 3000 mg/I) significantly reduced the fouling of membrane module during the bioreactor operation. A fouled membrane module could be easily regenerated with a 1 M of sulfuric acid solution. In conclusion, the submerged MBR could be used for high-density culture of iron-oxidizing bacteria and for continuous ferrous iron oxidation. As far as our knowledge concerns, this is the first study on the application of a submerged MBR to high acidic conditions (below pH 2)
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Ferric Compounds
|2 NLM
|
650 |
|
7 |
|a Ferrous Compounds
|2 NLM
|
650 |
|
7 |
|a ferric phosphate
|2 NLM
|
650 |
|
7 |
|a N6BAA189V1
|2 NLM
|
650 |
|
7 |
|a Hydrogen Sulfide
|2 NLM
|
650 |
|
7 |
|a YY9FVM7NSN
|2 NLM
|
700 |
1 |
|
|a Lee, D S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Park, J M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 51(2005), 6-7 vom: 29., Seite 59-68
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:51
|g year:2005
|g number:6-7
|g day:29
|g pages:59-68
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 51
|j 2005
|e 6-7
|b 29
|h 59-68
|