Modelling of the extractive membrane bioreactor process based on natural fluorescence fingerprints and process operation history

A method for non-mechanistic and non-linear modelling of complex biological processes is presented, using the example of the extractive membrane bioreactor (EMB). The model is based on artificial neural networks (ANN), which are able to predict the state of the process from a combination of reactor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 51(2005), 6-7 vom: 29., Seite 51-8
1. Verfasser: Wolf, G (VerfasserIn)
Weitere Verfasser: Almeida, J S, Reis, M A M, Crespo, J G
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM156415488
003 DE-627
005 20231223074121.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0522.xml 
035 |a (DE-627)NLM156415488 
035 |a (NLM)16003961 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wolf, G  |e verfasserin  |4 aut 
245 1 0 |a Modelling of the extractive membrane bioreactor process based on natural fluorescence fingerprints and process operation history 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 30.08.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A method for non-mechanistic and non-linear modelling of complex biological processes is presented, using the example of the extractive membrane bioreactor (EMB). The model is based on artificial neural networks (ANN), which are able to predict the state of the process from a combination of reactor operational parameters and natural fluorescence fingerprints. Current as well as historic process operation is included in the ANN input vector, in order to account for lag-times within the reactor system and for biofilm dynamics that are dependent on process history. The model is especially relevant for practitioners, as it does not require assumptions on underlying process mechanisms, and it relies on routinely available operational data and on an easy-to-install, non-invasive, in-situ, on-line monitoring method. Moreover, it focuses on the prediction of overall process performance parameters, which are of immediate relevance in practice. The developed model was able to predict the process state very well. Sensitivity analysis revealed that the main impact on process performance stems from process operation rather than the physiological state of the biological culture, and that in the EMB configuration employed process operation history decisively impacts on the process outcome 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Almeida, J S  |e verfasserin  |4 aut 
700 1 |a Reis, M A M  |e verfasserin  |4 aut 
700 1 |a Crespo, J G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 51(2005), 6-7 vom: 29., Seite 51-8  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnns 
773 1 8 |g volume:51  |g year:2005  |g number:6-7  |g day:29  |g pages:51-8 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2005  |e 6-7  |b 29  |h 51-8