|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM156229102 |
003 |
DE-627 |
005 |
20231223073734.0 |
007 |
tu |
008 |
231223s2004 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0521.xml
|
035 |
|
|
|a (DE-627)NLM156229102
|
035 |
|
|
|a (NLM)15984264
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Mészáros, Róbert
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Adsorption of poly(ethyleneimine) on silica surfaces
|b effect of pH on the reversibility of adsorption
|
264 |
|
1 |
|c 2004
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 22.05.2006
|
500 |
|
|
|a Date Revised 26.10.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The role of polymer charge density in the kinetics of the adsorption and desorption, on silica, of the polyelectrolyte poly(ethyleneimine) (PEI) was investigated by stagnation-point flow reflectometry. In the first series of experiments, PEI solutions were introduced at the same ionic strength and pH as the background solvent. It was found that the adsorbed amount of PEI increased by increasing pH. In the second series of investigations, several PEI solutions with ascending pH were introduced consecutively into the cell. In these cases, a stepwise buildup of the adsorbed amount was observed and the "final" adsorbed amounts were observed to be roughly equal with the adsorbed amounts of the first series of measurements at the same pH. Finally, adsorption/desorption experiments were performed where the preadsorption of PEI was followed by the introduction of PEI solutions of descending pH. No desorption was detected when the pH changed from pH = 9.7 to pH = 5.8. However, when there was a 9.7 --> 3.3 or 5.8 --> 3.3 decrease in the pH, the kinetic barriers of desorption seemed to completely disappear and roughly the same adsorbed amount as in the first series of experiments at pH = 3.3 was quickly attained by desorption of the PEI. This study reveals the high impact of pH, affecting parameters such as charge density of the surface and polyelectrolyte as well as the structure of the adsorbed macromolecules, on the desorption properties of weak polyelectrolytes. The observed interfacial behavior of PEI may have some important consequences for the stability of alternating polyelectrolyte multilayers containing weak polyelectrolytes
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Varga, Imre
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gilányi, Tibor
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 20(2004), 12 vom: 08. Juni, Seite 5026-9
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:20
|g year:2004
|g number:12
|g day:08
|g month:06
|g pages:5026-9
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 20
|j 2004
|e 12
|b 08
|c 06
|h 5026-9
|