Face detection using spectral histograms and SVMs

We present a face detection method using spectral histograms and support vector machines (SVMs). Each image window is represented by its spectral histogram, which is a feature vector consisting of histograms of filtered images. Using statistical sampling, we show systematically the representation gr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1997. - 35(2005), 3 vom: Juni, Seite 467-76
1. Verfasser: Waring, Christopher A (VerfasserIn)
Weitere Verfasser: Liu, Xiuwen
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Comparative Study Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S. Validation Study
LEADER 01000caa a22002652 4500
001 NLM156113120
003 DE-627
005 20250206120156.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0521.xml 
035 |a (DE-627)NLM156113120 
035 |a (NLM)15971915 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Waring, Christopher A  |e verfasserin  |4 aut 
245 1 0 |a Face detection using spectral histograms and SVMs 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 19.07.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We present a face detection method using spectral histograms and support vector machines (SVMs). Each image window is represented by its spectral histogram, which is a feature vector consisting of histograms of filtered images. Using statistical sampling, we show systematically the representation groups face images together; in comparison, commonly used representations often do not exhibit this necessary and desirable property. By using an SVM trained on a set of 4500 face and 8000 nonface images, we obtain a robust classifying function for face and non-face patterns. With an effective illumination-correction algorithm, our system reliably discriminates face and nonface patterns in images under different kinds of conditions. Our method on two commonly used data sets give the best performance among recent face-detection ones. We attribute the high performance to the desirable properties of the spectral histogram representation and good generalization of SVMs. Several further improvements in computation time and in performance are discussed 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Validation Study 
700 1 |a Liu, Xiuwen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1997  |g 35(2005), 3 vom: Juni, Seite 467-76  |w (DE-627)NLM098252887  |x 1083-4419  |7 nnns 
773 1 8 |g volume:35  |g year:2005  |g number:3  |g month:06  |g pages:467-76 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2005  |e 3  |c 06  |h 467-76