Multidimensional orthogonal filter bank characterization and design using the Cayley transform

We present a complete characterization and design of orthogonal infinite impulse response (IIR) and finite impulse response (FIR) filter banks in any dimension using the Cayley transform (CT). Traditional design methods for one-dimensional orthogonal filter banks cannot be extended to higher dimensi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 14(2005), 6 vom: 29. Juni, Seite 760-9
1. Verfasser: Zhou, Jianping (VerfasserIn)
Weitere Verfasser: Do, Minh N, Kovacević, Jelena
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:We present a complete characterization and design of orthogonal infinite impulse response (IIR) and finite impulse response (FIR) filter banks in any dimension using the Cayley transform (CT). Traditional design methods for one-dimensional orthogonal filter banks cannot be extended to higher dimensions directly due to the lack of a multidimensional (MD) spectral factorization theorem. In the polyphase domain, orthogonal filter banks are equivalent to paraunitary matrices and lead to solving a set of nonlinear equations. The CT establishes a one-to-one mapping between paraunitary matrices and para-skew-Hermitian matrices. In contrast to the paraunitary condition, the para-skew-Hermitian condition amounts to linear constraints on the matrix entries which are much easier to solve. Based on this characterization, we propose efficient methods to design MD orthogonal filter banks and present new design results for both IIR and FIR cases
Beschreibung:Date Completed 19.07.2005
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:1941-0042