Learning multiview face subspaces and facial pose estimation using independent component analysis

An independent component analysis (ICA) based approach is presented for learning view-specific subspace representations of the face object from multiview face examples. ICA, its variants, namely independent subspace analysis (ISA) and topographic independent component analysis (TICA), take into acco...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 14(2005), 6 vom: 29. Juni, Seite 705-12
1. Verfasser: Li, Stan Z (VerfasserIn)
Weitere Verfasser: Lu, XiaoGuang, Hou, Xinwen, Peng, Xianhua, Cheng, Qiansheng
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Comparative Study Evaluation Study Journal Article
LEADER 01000naa a22002652 4500
001 NLM156111721
003 DE-627
005 20231223073511.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0520.xml 
035 |a (DE-627)NLM156111721 
035 |a (NLM)15971770 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Stan Z  |e verfasserin  |4 aut 
245 1 0 |a Learning multiview face subspaces and facial pose estimation using independent component analysis 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 19.07.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a An independent component analysis (ICA) based approach is presented for learning view-specific subspace representations of the face object from multiview face examples. ICA, its variants, namely independent subspace analysis (ISA) and topographic independent component analysis (TICA), take into account higher order statistics needed for object view characterization. In contrast, principal component analysis (PCA), which de-correlates the second order moments, can hardly reveal good features for characterizing different views, when the training data comprises a mixture of multiview examples and the learning is done in an unsupervised way with view-unlabeled data. We demonstrate that ICA, TICA, and ISA are able to learn view-specific basis components unsupervisedly from the mixture data. We investigate results learned by ISA in an unsupervised way closely and reveal some surprising findings and thereby explain underlying reasons for the emergent formation of view subspaces. Extensive experimental results are presented 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Lu, XiaoGuang  |e verfasserin  |4 aut 
700 1 |a Hou, Xinwen  |e verfasserin  |4 aut 
700 1 |a Peng, Xianhua  |e verfasserin  |4 aut 
700 1 |a Cheng, Qiansheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 14(2005), 6 vom: 29. Juni, Seite 705-12  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:14  |g year:2005  |g number:6  |g day:29  |g month:06  |g pages:705-12 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 14  |j 2005  |e 6  |b 29  |c 06  |h 705-12